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Predictes Instruction for Processing Vectors,” by inventors
Jeffry E. Gonion and Keith E. Diefendorft, filed 13 Jan. 2011.
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Ser. No. 12/237,212, entitled “Conditional Data-Dependency
Resolution in Vector Processors,” by inventors Jeftry E.
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endorff, filed 24 Sep. 2008.

BACKGROUND

1. Field

The described embodiments relate to techniques for
improving the performance of computer systems. More spe-
cifically, the described embodiments relate to predicting a
result of a dependency-checking instruction when processing
vector instructions.

2. Related Art

Recent advances in processor design have led to the devel-
opment of a number of different processor architectures. For
example, processor designers have created superscalar pro-
cessors that exploit instruction-level parallelism (ILP), multi-
core processors that exploit thread-level parallelism (TLP),
and vector processors that exploit data-level parallelism
(DLP). Each of these processor architectures has unique
advantages and disadvantages which have either encouraged
or hampered the widespread adoption of the architecture. For
example, because ILP processors can often operate on exist-
ing program code that has undergone only minor modifica-
tions, these processors have achieved widespread adoption.
However, TLP and DLP processors typically require applica-
tions to be manually re-coded to gain the benefit of the par-
allelism that they offer, a process that requires extensive
effort. Consequently, TLP and DLP processors have not
gained widespread adoption for general-purpose applica-
tions.

One significant issue affecting the adoption of DLP pro-
cessors is the vectorization of loops in program code. In a
typical program, a large portion of execution time is spent in
loops. Unfortunately, many of these loops have characteris-
tics that render them unvectorizable in existing DLP proces-
sors. Thus, the performance benefits gained from attempting
to vectorize program code can be limited.

One significant obstacle to vectorizing loops in program
code in existing systems is dependencies between iterations
of'the loop. For example, loop-carried data dependencies and
memory-address aliasing are two such dependencies. These
dependencies can be identified by a compiler during the com-
piler’s static analysis of program code, but they cannot be
completely resolved until runtime data is available. Thus,
because the compiler cannot conclusively determine that
runtime dependencies will not be encountered, the compiler
cannot vectorize the loop. Hence, because existing systems
require that the compiler determine the extent of available
parallelism during compilation, relatively little code can be
vectorized.

SUMMARY

The described embodiments include a processor that
executes a vector instruction. In the described embodiments,
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while dispatching instructions at runtime, the processor
encounters a dependency-checking instruction. Upon deter-
mining that a result of the dependency-checking instruction is
predictable, the processor dispatches a prediction micro-op-
eration associated with the dependency-checking instruction,
wherein the prediction micro-operation generates a predicted
result vector for the dependency-checking instruction. The
processor then executes the prediction micro-operation to
generate the predicted result vector. In the described embodi-
ments, when executing the prediction micro-operation to gen-
erate the predicted result vector, if a predicate vector is
received, for each element of the predicted result vector for
which the predicate vector is active, otherwise, for each ele-
ment of the predicted result vector, the processor sets the
element to zero.

In the described embodiments, upon generating the pre-
dicted result vector, the processor records that subsequent
vector instructions are being executed speculatively. The pro-
cessor then uses the predicted result vector to execute subse-
quent vector instructions that depend on the result from the
dependency-checking instruction.

In the described embodiments, the processor dispatches
the dependency-checking instruction and executes the depen-
dency-checking instruction to generate an actual result vec-
tor. Then, if the predicate vector is received, for each element
of'the predicted result vector for which the predicate vector is
active, otherwise, for each element of the predicted result
vector, the processor compares the element of the predicted
result vector to the corresponding element of the actual result
vector, and performs a remedial action if the predicted result
vector differs from the actual result vector.

In the described embodiments, the processor maintains a
record of an outcome of the comparison. In these embodi-
ments, the record can include a record of prediction accuracy.

In the described embodiments, when the prediction accu-
racy is below a threshold value, the processor determines that
the result of the dependency-checking instruction is unpre-
dictable and awaits the generation of the actual result vector
before executing subsequent dependent instructions.

In the described embodiments, the record of the prediction
accuracy includes a confidence level represented by a value
between a first value and a second value. In these embodi-
ments, the processor determines that a result of the depen-
dency-checking instruction is predictable when the value of
the confidence level is within a predetermined distance of the
first value.

In the described embodiments, when active elements of the
actual result vector include both zeroes and other-valued ele-
ments, or when the active elements of the actual result vector
include only other-valued elements, the processor adjusts the
confidence level toward the second value, and when active
elements of the actual result vector include only zeroes, the
processor adjusts the confidence level toward the first value.

In the described embodiments, before dispatching subse-
quent vector instructions that depend on the dependency-
checking instruction, the processor modifies the dependency
of the subsequent vector instructions from using the actual
result vector from the dependency-checking instruction to
using the predicted result vector generated by the prediction
micro-operation.

In the described embodiments, upon determining that the
result is not predictable for the dependency-checking instruc-
tion, the processor dispatches the dependency-checking
instruction, executes the dependency-checking instruction to
generate an actual result vector, and uses the actual result
vector to execute subsequent vector instructions that depend
on the result from the dependency-checking instruction.
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In the described embodiments, the processor uses one or
more factors to make the determination if the result can be
predicted for the dependency-checking instruction.

In the described embodiments, the prediction micro-opera-
tion received by the processor is decoded from a compiler-
inserted prediction instruction.

In the described embodiments, upon determining that a
result vector of the dependency-checking instruction is pre-
dictable, the processor generates a prediction micro-opera-
tion.

In the described embodiments, the dependency-checking
instruction comprises a CheckHazard instruction or a Condi-
tionalStop instruction.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 presents a block diagram of a computer system in
accordance with the described embodiments.

FIG. 2 presents an expanded view of a processor in accor-
dance with the described embodiments.

FIG. 3 presents an expanded view of a vector execution unit
in accordance with the described embodiments.

FIG. 4 presents a block diagram of a dispatch unit and a
monitoring mechanism in accordance with some embodi-
ments.

FIG. 5 presents a flowchart illustrating a process for pre-
dicting the result of a dependency-checking instruction using
a hardware prediction mechanism in accordance with the
described embodiments.

FIG. 6 presents a flowchart illustrating a process for pre-
dicting the result of a dependency-checking instruction using
a compiler-inserted prediction instruction in accordance with
the described embodiments.

In the figures, like reference numerals refer to the same
figure elements.

DETAILED DESCRIPTION

The following description is presented to enable any per-
son skilled in the art to make and use the described embodi-
ments, and is provided in the context of a particular applica-
tion and its requirements. Various modifications to the
described embodiments will be readily apparent to those
skilled in the art, and the general principles defined herein
may be applied to other embodiments and applications with-
out departing from the spirit and scope of the described
embodiments. Thus, the described embodiments are not lim-
ited to the embodiments shown, but are to be accorded the
widest scope consistent with the principles and features dis-
closed herein.

The data structures, instructions, and code described in this
detailed description can be stored on a computer-readable
storage medium, which may be any device or medium that
can store code and/or data for use by a computer system. The
computer-readable storage medium includes, but is not lim-
ited to, volatile memory and non-volatile memory, such as
magnetic and optical storage devices such as disk drives,
magnetic tape, CDs (compact discs), DVDs (digital versatile
discs or digital video discs), or other media capable of storing
data structures or code. Although various types of computer-
readable storage media can be used, the described embodi-
ments do not include non-transitory computer readable stor-
age media.

The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored in a computer-readable storage medium
as described above. When a computer system reads and
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executes the code and/or data stored on the computer-read-
able storage medium, the computer system performs the
methods and processes embodied as data structures and code
and stored within the computer-readable storage medium.
Macroscalar Architecture

The embodiments described herein are based in part on the
Macroscalar Architecture that is described in U.S. patent
application Ser. No. 12/977,333, entitled “Generate Predi-
cates Instruction for Processing Vectors,” by inventors Jeffry
E. Gonion and Keith Diefendorff, filed on 23 Dec. 2010
(hereinafter “the *333 application™), the contents of which are
incorporated by reference.

As described in the ’333 application, the described
embodiments provide an instruction set and supporting hard-
ware that allow compilers to generate program code for loops
without completely determining parallelism at compile-time,
and without discarding useful static analysis information.
Specifically, these embodiments provide a set of instructions
that do not mandate parallelism for loops but instead enable
parallelism to be exploited at runtime if dynamic conditions
permit. These embodiments thus include instructions that
enable code generated by the compiler to dynamically switch
between non-parallel (scalar) and parallel (vector) execution
for loop iterations depending on conditions at runtime by
switching the amount of parallelism used.

These embodiments provide instructions that enable an
undetermined amount of vector parallelism for loop iterations
but do not require that the parallelism be used at runtime.
More specifically, these embodiments include a set of vector-
length agnostic instructions whose effective vector length can
vary depending on runtime conditions. Thus, if runtime
dependencies demand non-parallel execution of the code,
then execution occurs with an effective vector length of one
element. Likewise, if runtime conditions permit parallel
execution, the same code executes in a vector-parallel manner
to whatever degree is allowed by runtime dependencies (and
the vector length of the underlying hardware). For example, if
two out of eight elements of the vector can safely execute in
parallel, the described embodiments execute the two ele-
ments in parallel. In these embodiments, expressing program
code in a vector-length agnostic format enables a broad range
of vectorization opportunities that are not present in existing
systems.

In the described embodiments, during compilation, a com-
piler first analyzes the loop structure of a given loop in pro-
gram code and performs static dependency analysis. The
compiler then generates program code that retains static
analysis information and instructs processor 102 how to
resolve runtime dependencies and process the program code
with the maximum amount of parallelism possible. More
specifically, the compiler provides vector instructions for per-
forming corresponding sets of loop iterations in parallel, and
provides vector-control instructions for dynamically limiting
the execution of the vector instructions to prevent data depen-
dencies between the iterations of the loop from causing an
error (which can be called “vector partitioning™). This
approach defers the determination of parallelism to runtime,
where the information on runtime dependencies is available,
thereby allowing the software and processor to adapt paral-
lelism to dynamically changing conditions.

Terminology

Throughout the description, we use the following termi-
nology. These terms may be generally known in the art, but
are described below to clarify the subsequent descriptions.

The term “active element,” as used in this description to
refer to one or more elements of a vector, indicates elements
that are operated on during a given operation. Generally, the
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described embodiments enable a vector execution unit to
selectively perform parallel operations on one or more avail-
able elements in a given vector in parallel. For example, an
operation can be performed on only the first two of eight
elements of the vector in parallel. In this case, the first two
elements are “active elements,” while the remaining six ele-
ments are “inactive elements.” In the described embodiments,
one or more other vectors can be used to determine which
elements in a given operand vector are active (i.e., are to be
operated on). For example, a “predicate vector” can include
“active” elements that are used to determine which elements
in the operand vector to perform operations on. In some
embodiments, elements that contain data of a predetermined
type are active elements (e.g., true, false, non-zero, zero,
uppercase/lowercase characters, even/odd/prime numbers,
vowels, whole numbers, etc.).

The terms “true” and “false” are used in this description to
refer to data values (e.g., a data value contained in an element
in a vector). Generally, in computer systems true and false are
often represented by 1 and 0, respectively. In practice, a given
embodiment could use any value to represent true and false,
such as the number 55, or the letter “T.”

Notation

In describing the embodiments in the instant application,
we use the following formats for variables, which are vector
quantities unless otherwise noted:
p5=a<b;

Elements of vector p5 are set to 0 or 1 depending on the
result of testing a<b. Note that vector p5 can be a “predi-
cate vector,” as described in detail below. Some instruc-
tions that generate predicate vectors also set processor
status flags to reflect the resulting predicates. For
example, the processor status flags can include the
FIRST, LAST, NONE, and/or ALL flags.

~p5; a=b+c;

Only elements in vector a designated by active (e.g., non-
zero) elements in the predicate vector p5 receive the
result of b+c. The remaining elements of a are
unchanged. This operation is called “predication,” and is
denoted using the tilde (“~) sign before the predicate
vector.

1p5; a=b+c;

Only elements in vector a designated by active (e.g., non-
zero) elements in the predicate vector p5 receive the
result of b+c. The remaining elements of a are setto zero.
This operation is called “zeroing,” and is denoted using
the exclamation point (“!”) sign before the predicate
vector.

if (FIRST()) goto ...; Also LAST( ), ANY( ), ALL( ), CARRY(),
ABOVE( ), or NONE( ), (where ANY( ) == INONE())

These instructions test the processor status flags and
branch accordingly.

x+=VECLEN;

VECLEN is a machine value that communicates the num-
ber of elements per vector. The value is determined at
runtime by the processor executing the code, rather than
being determined by the assembler.

// Comment

In a similar way to many common programming lan-
guages, the following examples use the double forward
slash to indicate comments. These comments can pro-
vide information regarding the values contained in the
indicated vector or explanation of operations being per-
formed in a corresponding example.
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In the examples in the instant application, other C++-for-
matted operators retain their conventional meanings, but are
applied across the vector on an element-by-element basis.
Where function calls are employed, they imply a single
instruction that places any value returned into a destination
register. For simplicity in understanding, all vectors described
herein are vectors of integers, but alternative embodiments
support other data formats.

Instruction Definitions

The described embodiments predict results for vector
instructions that check for dependencies between the ele-
ments of a vector or between the elements of two or more
different vectors as part of a process for determining the
elements of the vector instructions for which an operation can
be performed in parallel. For example, the ConditionalStop
instruction is one such instruction, as is the CheckHazardP
instruction. This section provides a brief description of the
ConditionalStop and CheckHazardP instructions to enable a
clearer understanding of the described embodiments.

Although we provide brief descriptions of the Condition-
alStop and CheckHazardP instructions, the *333 application
includes more detail about these instructions’ operations and
interactions with other instructions and operations. In addi-
tion, although we describe the ConditionalStop and Check-
HazardP instructions as examples, the prediction operation
can be performed for any vector instruction, scalar instruc-
tion, or operation of processor 102 that checks dependencies
between the active elements of a vector or between the active
elements of two or more different vectors. Moreover,
although we use certain arrangements of instructions in
describing the function of the ConditionaiStop and Check-
HazardP instructions, a person of skill in the art will recog-
nize that these concepts may be implemented using different
arrangements or types of instructions without departing from
the spirit of the described embodiments.

We describe these instructions using a signed-integer data
type. However, in alternative embodiments, other data types
or formats are used. Moreover, although Macroscalar instruc-
tions may take vector, scalar, or immediate arguments in
practice, only vector arguments are shown here to avoid
redundancy.

In the following examples, predication is communicated to
the instructions via two variables. The vector gPred is the
predicate vector that affects the instruction and/or the assign-
ment of the result vector. Additionally, some instructions may
reference gPred to affect the operation of the instruction apart
from the final assignment. If an instruction is not predicated,
then all elements are considered active, and the vector gPred
contains all true indicators (i.e., the predicate vector is an
assumed predicate vector).

Note that the format of the following instruction definitions
is a statement of the instruction type followed by a description
of'the instruction that can include example code as well as one
or more usage examples.

ConditionalStop
The Conditional Stop instruction takes the scalar parameter
mode, which indicates any number of four possible transi-
tions between true and false values of adjacent elements in
predicate p that imply data dependencies. The parameter
mode is a 4-bit field, the bits of which are defined as follows:
kTF—Implies a loop-carried dependency from an iteration
for which the predicate is true, to the subsequent itera-
tion for which the value of the predicate is false.

kFF—Implies a loop-carried dependency from an iteration
for which the predicate is false, to the subsequent itera-
tion for which the value of the predicate is false.
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kFT—Implies a loop-carried dependency from an iteration
for which the predicate is false, to the subsequent itera-
tion for which the value of the predicate is true.

kTT—Implies aloop-carried dependency from an iteration
for which the predicate is true, to the subsequent itera-
tion for which the value of the predicate is true.

The 1-based (i.e., considering the vector as starting with
element “1”") element position corresponding to the iteration
that generates the data that is depended upon is stored in the
destination vector at the element position corresponding to
the iteration that depends on the data. If no data dependency
exists, a value of 0 is stored in the destination vector at that
element. Note that the ConditionalStop instruction supports
only zeroing; non-zeroing predication is illegal.

Vector ConditionalStop(Vector &p, int mode)

{

Vector r = 0;
for (int x=1; x*<VECLEN; ++x) // Skip the first
element
{
if (p.v[r-1]==0 && p.v[x] == 0)

if (mode & kFF)
.V[X] =X;

else if (p.v[x-1] ==0 && p.v[x] == 1)

if (mode & kFT)
.V[X] =X;

else if (p.v[x-1] ==1 && p.v[x] == 0)

if (mode & kTF)
.V[X] =X;

else
if (mode & kTT)

.V[X] =X;

return(r);

Examples:

1p0; a=ConditionalStop(b, kTFIKFT);

On Entry: p0={00111100}

a={99999999}
b={01011010}

On Exit: a={0023 0500}
CheckHazardP

The CheckHazardP instruction examines two vectors of
memory addresses (or array indices), corresponding to two
memory operations, for potential data dependencies through
memory. The vector first holds addresses for the first memory
operation, and the vector second holds addresses for the sec-
ond operation. The predicate p indicates which elements of
second are to be operated upon. This instruction checks for
addresses that overlap between each element of first and
lower-numbered elements of second. In the case of multiple
matches, only the highest-numbered position is recorded. As
shown below, in some embodiments, the instruction pro-
cesses all elements equivalently; however, predication is per-
formed by the assignment of the result, and should be con-
sidered an integral part of this instruction.

The 1-based element position corresponding to the itera-
tion that generates the data that is depended upon is stored in
the destination vector at the element position corresponding
to the iteration that is dependent upon the data. If no data
dependency exists, a zero is stored in the destination vector at
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the element position corresponding to the iteration that does
not have the dependency. Variants of this instruction should
account for overlap between various sizes of data types.
The CheckHazardP instruction only supports zeroing
predication. Non-zeroing predication is not allowed.

Vector CheckHazardP(Vector &first, Vector &second,
Vector &p)

Vector result = 0;
int X,y;
for (x=0; x<VECLEN; ++x)
for (y=0; y<x; ++y)
if (p-vlyD
if (OVERLAP(first.v[x],
second.v[y]))

result.v[x] =y +1;

return(result);

Examples:
1p0; a=CheckHazardP(b,c,pl);
On Entry: p0={11111100}
a={99999999}
b={12122156}
c={11224567}
p1={11011111}

On Exit: a={00204 200}
Computer System

FIG. 1 presents a block diagram of a computer system 100
in accordance with the described embodiments. Computer
system 100 includes processor 102, 1.2 cache 106, memory
108, and mass-storage device 110. Processor 102 includes .1
cache 104.

Processor 102 can be a general-purpose processor that
performs computational operations. For example, processor
102 can be a central processing unit (CPU) such as a micro-
processor, a controller, an application-specific integrated cir-
cuit (ASIC), or a field-programmable gate array (FPGA). In
the described embodiments, processor 102 has one or more
mechanisms for vector processing (i.e., vector execution
units).

Mass-storage device 110, memory 108, .2 cache 106, and
L1 cache 104 are computer-readable storage devices that
collectively form a memory hierarchy that stores data and
instructions for processor 102. Generally, mass-storage
device 110 is a high-capacity, non-volatile memory, such as a
disk drive or a large flash memory, with a large access time,
while L1 cache 104, L2 cache 106, and memory 108 are
smaller, faster semiconductor memories that store copies of
frequently used data. Memory 108 is typically a dynamic
random access memory (DRAM) structure that is larger than
L1 cache104 and .2 cache 106, whereas .1 cache 104 and L2
cache 106 are typically comprised of smaller static random
access memories (SRAM). In some embodiments, [.2 cache
106, memory 108, and mass-storage device 110 are shared
between one or more processors in computer system 100.
Such memory structures are well-known in the art and are
therefore not described in more detail.

In some embodiments, the devices in the memory hierar-
chy (i.e., L1 cache 104, etc.) can access (i.e., read and/or
write) multiple cache lines per cycle. These embodiments
enable more effective processing of memory accesses that
occur based on a vector of pointers or array indices to non-
contiguous memory addresses. In addition, in some embodi-
ments, the caches in the memory hierarchy are divided into a
number of separate banks, each of which can be accessed in
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parallel. Banks within caches and parallel accesses of the
banks are known in the art and hence are not described in
more detail.

Computer system 100 can be incorporated into many dif-
ferent types of electronic devices. For example, computer
system 100 can be part of a desktop computer, a laptop com-
puter, a server, a media player, an appliance, a cellular phone,
apiece of testing equipment, a network appliance, a personal
digital assistant (PDA), a hybrid device (i.e., a “smart
phone”), or another electronic device.

Although we use specific components to describe com-
puter system 100, in alternative embodiments, different com-
ponents may be present in computer system 100. For
example, computer system 100 may not include some of the
memory hierarchy (e.g., memory 108 and/or mass-storage
device 110). Alternatively, computer system 100 may include
video cards, video-capture devices, user-interface devices,
network cards, optical drives, and/or other peripheral devices
that are coupled to processor 102 using a bus, a network, or
another suitable communication channel. Computer system
100 may also include one or more additional processors,
wherein the processors share some or all of [.2 cache 106,
memory 108, and mass-storage device 110.

Processor

FIG. 2 presents an expanded view of processor 102 in
accordance with the described embodiments. As is shown in
FIG. 2, processor 102 includes .1 cache 104, dispatch unit
208, integer execution unit 202, floating-point execution unit
206, and vector execution unit 204 (integer execution unit
202, floating-point execution unit 206, and vector execution
unit 204 as a group are interchangeably referred to as “the
execution units”).

Dispatch unit 208 receives decoded instructions from a
decode unit (not shown) in processor 102 and dispatches the
decoded instructions to the appropriate execution units. Dis-
patch unit 208 is described in more detail below with respect
to FIG. 4.

Each of execution units 202-206 is used for performing
computational operations, such as logical operations, math-
ematical operations, or bitwise operations for an associated
type of operand. More specifically, integer execution unit 202
is used for performing computational operations that involve
integer operands, floating-point execution unit 206 is used for
performing computational operations that involve floating-
point operands, and vector execution unit 204 is used for
performing computational operations that involve vector
operands. Integer execution units and floating-point execu-
tion units are generally known in the art and are not described
in more detail.

In the described embodiments, vector execution unit 204 is
a single-instruction-multiple-data (SIMD) execution unit that
performs operations in parallel on some or all of the data
elements that are included in vectors of operands. FIG. 3
presents an expanded view of vector execution unit 204 in
accordance with the described embodiments. As is shown in
FIG. 3, vector execution unit 204 includes a vector register
file 300 and an execution unit 302. Vector register file 300
includes a set of vector registers that can hold operand vectors
and result vectors for execution unit 302. In some embodi-
ments, there are 32 vector registers in the vector register file,
and each register includes 128 bits. In alternative embodi-
ments, there are different numbers of vector registers and/or
different numbers of bits per register.

Execution unit 302 retrieves operands from registers in
vector register file 300 and executes vector instructions that
cause execution unit 302 to perform operations in parallel on
some or all of the data elements (or, simply, “elements”) in the
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operand vector. For example, execution unit 302 can perform
logical operations, mathematical operations, or bitwise
operations on the elements in the vector. Execution unit 302
can perform one vector operation per cycle (although the
“cycle” may include more than one cycle of a clock used to
trigger, synchronize, and/or control execution unit 302’s
computational operations).

In the described embodiments, execution unit 302 supports
vectors that hold N data elements (e.g., bytes, words, double-
words, etc.). In these embodiments, execution unit 302 can
perform operations on Nor fewer of the data elements in an
operand vector in parallel. For example, assuming an embodi-
ment where the vector is 256 bits in length (i.e., 32 bytes), the
data elements being operated on are four-byte words, and the
operation is adding a value to the data elements, these
embodiments can add the value to any number of the eight
words in the vector.

In the described embodiments, execution unit 302 includes
at least one control signal that enables the dynamic limitation
of'the data elements in an operand vector on which execution
unit 302 operates. Specifically, depending on the state of the
control signal, execution unit 302 may or may not operate on
all the data elements in the vector. For example, assuming an
embodiment where the vector is 512 bits in length and the
data elements being operated on are four-byte words, the
control signal can be asserted to prevent operations from
being performed on some or all of 16 data words in the
operand vector. Note that “dynamically” limiting the data
elements in the operand vector upon which operations are
performed can involve asserting the control signal separately
for each cycle at runtime.

In some embodiments, based on the values contained in a
vector of predicates or one or more scalar predicates, execu-
tion unit 302 applies vector operations to selected vector data
elements only. In some embodiments, the remaining data
elements in a result vector remain unaffected (which we call
“predication™) or are forced to zero (which we call “zero-
ing”). In some of these embodiments, the clocks for the data
element processing subsystems (“lanes™) that are unused due
to predication or zeroing in execution unit 302 can be gated,
thereby reducing dynamic power consumption in execution
unit 302.

The described embodiments are vector-length agnostic.
Thus, a compiler or programmer need not have explicit
knowledge of the vector length supported by the underlying
hardware (e.g., vector execution unit 302). In these embodi-
ments, a compiler generates or a programmer writes program
code that need not rely on (or use) a specific vector length
(some embodiments are forbidden from even specifying a
specific vector size in program code). Thus, the compiled
code in these embodiments (i.e., binary code) runs on other
embodiments with differing vector lengths, while potentially
realizing performance gains from processors that support
longer vectors. Consequently, as process technology allows
longer vectors, execution of legacy binary code simply speeds
up without any effort by software developers.

In some embodiments, vector lengths need not be powers
of'two. Specifically, vectors of 3, 7, or another number of data
elements can be used in the same way as vectors with power-
of-two numbers of data elements.

In the described embodiments, each data element in the
vector can contain an address that is used by execution unit
302 for performing a set of memory accesses in parallel. In
these embodiments, if one or more elements of the vector
contain invalid memory addresses, invalid memory-read
operations can occur. In these embodiments, invalid memory-
read operations that would otherwise result in program ter-
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mination instead cause any elements with valid addresses to
be read and elements with invalid elements to be flagged,
allowing program execution to continue in the face of specu-
lative, and in hindsight illegal, read operations.

In some embodiments, processor 102 (and hence execution
unit 302) is able to operate on and use vectors of pointers. In
these embodiments, the number of data elements per vector is
the same as the number of pointers per vector, regardless of
the size of the data type. Instructions that operate on memory
may have variants that indicate the size of the memory access,
but elements in processor registers should be the same as the
pointer size. In these embodiments, processors that support
both 32-bit and 64-bit addressing modes may choose to allow
twice as many elements per vector in 32-bit mode, thereby
achieving greater throughput. This implies a distinct through-
put advantage to 32-bit addressing, assuming the same width
data path. Implementation-specific techniques can be used to
relax the requirement. For example, double-precision float-
ing-point numbers can be supported in 32-bit mode through
register pairing or some other specialized mechanism.

FIG. 4 presents a block diagram of dispatch unit 208 and
monitoring mechanism 406 in accordance with some
embodiments. As can be seen in FIG. 4, dispatch unit 208
includes steering mechanism 400 and dispatch queues 402.
Steering mechanism 400 and dispatch queues 402 are used
for dispatching decoded instructions to execution units 202-
206. Dispatch queues 402 includes a first-in-first-out (FIFO)
dispatch queue for each of the execution units. As each
decoded instruction is received from the decode unit, steering
mechanism 400 determines the appropriate execution unit for
the instruction (e.g., floating-point execution unit 206 for
floating-point instructions, etc.) and “steers” the instruction
to corresponding execution unit by placing the instruction in
a next available position in the dispatch queue for the execu-
tion unit. Dispatch unit 208 can then release an instruction per
cycle from each of the dispatch queues to the corresponding
execution unit for execution.

In addition to the mechanisms for dispatching decoded
instructions, dispatch unit 208 includes prediction mecha-
nism 404. Generally, given a dependency-checking instruc-
tion, prediction mechanism 404 determines if the values in a
result vector for the dependency-checking instruction are pre-
dictable and, if so, dispatches a prediction micro-operation to
vector execution unit 204 to be executed. When executed, the
prediction micro-operation generates a predicted result vec-
tor for the dependency-checking instruction in which all of
the active elements are set to zero. The predicted result vector
can then be used to indicate that no dependencies exist
between the active elements of the one or more vectors that
are checked by the dependency-checking instruction when
executing one or more subsequent dependent instructions.
(Note that, as described below, the prediction micro-opera-
tion can be generated by prediction mechanism 404 or can be
decoded from a compiler-inserted prediction instruction.)

Processor 102 also includes monitoring mechanism 406,
which includes mechanisms for handling the execution of
subsequent vector instructions based on the predicted result
vector, determining if the prediction was correct, performing
remedial actions if the prediction was incorrect, and keeping
one or more records regarding the outcome of the prediction
that can be used in making subsequent predictions.

Note that, although we show prediction mechanism 404 as
being included in dispatch unit 208, and monitoring mecha-
nism 406 as a separate mechanism, in some embodiments,
some or all of the mechanisms are arranged differently. For
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example, some or all of monitoring mechanism 406 can be
included in dispatch unit 208 and/or in execution units 202-
206.

Although we describe processor 102 as including a par-
ticular set of units, in alternative embodiments, processor 102
can include different numbers or types of units. Moreover,
although the embodiment shown in FIG. 2 is limited to a
particular set of functional blocks, in the described embodi-
ments, processor 102 can include other functional blocks,
such as an instruction fetch unit, a branch unit, a memory
management unit, I/O interfaces, etc. coupled to the execu-
tion units. The additional functional blocks that can be
present in processor 102 are known in the art and are not
described in more detail.

Prediction of Dependencies

Generally, in Macroscalar processors (i.e., in processors
based on the Macroscalar architecture), iterations of loops
can be executed in parallel using corresponding elements of a
vector instruction. As described above, in these processors,
the vector instructions can be partitioned so that only ele-
ments that can safely be operated on in parallel are operated
on by a vector instruction. This “vector partitioning” is deter-
mined based on a run-time dependency analysis. The depen-
dency analysis depends in turn on calculating the values to be
analyzed. Thus, in prior Macroscalar processors, vector par-
titioning could not begin until the values to be analyzed had
been computed.

However, for many loops, the dependency-analysis almost
always determines that there are no dependencies. For
example, “no dependencies” results almost always occur for
loops that include checks for “may-alias” conditions between
memory references (i.e., memory references which cannot be
statically resolved by a compiler). In such loops, vector par-
titioning, with its attendant dependency analysis, is per-
formed for correctness, but rarely, if ever, executes more than
once (iterates) at run-time. In other words, on a first pass, the
dependency check almost always determines that all of the
elements of the vector instruction(s) for the loop can safely be
executed in parallel. Thus, the operations for the loop are
delayed while the processor performs the largely needless
verification that the dependencies do not exist—which affects
the processor’s performance.

In order to avoid the effect on performance caused by
unnecessarily performing dependency analyses during vector
partitioning, the described embodiments include a prediction
mechanism in processor 102 that can be used to predict a
result for a dependency-checking instruction that performs
the dependency checks during the dependency analysis. In
these embodiments, the prediction mechanism determines
when dependencies are unlikely to exist for all of the active
elements of the vector instruction and predicts a result vector
that indicates that there are no dependencies for the vector
instruction. Based on the prediction, the prediction mecha-
nism can generate a predicted result vector for which each
active element contains a zero. Using the predicted result
vector, processor 102 can then immediately execute subse-
quent instructions.

However, when using the predicted result vector to execute
subsequent instructions, processor 102 records that the
execution is speculative. When the actual result returns from
executing the dependency-checking instruction (i.e., the
dependency-checking instruction for which the result was
predicted), processor 102 checks the actual result against the
predicted result. If the actual result and the predicted result do
not match, processor 102 can discard the results from instruc-
tions executed using the predicted result vector and perform a
remedial action. In some embodiments, when performing the
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remedial action, processor 102 recovers the processor state
and restarts execution of instructions at the instruction fol-
lowing the predicted dependency-checking instruction using
the actual result.

Predicting a Result for a Dependency-Checking Instruction
using Hardware Prediction

FIG. 5 presents a flowchart illustrating a process for pre-
dicting the result of a dependency-checking instruction using
a hardware prediction mechanism 404 in processor 102 in
accordance with the described embodiments.

The process shown in FIG. 5 starts when processor 102
optionally receives a predicate vector (step 500). Recall that
processor 102 uses active elements of the predicate vector to
determine the elements of a dependency-checking instruction
(see step 502) for which result vector elements are generated.
However, if processor 102 does not receive a predicate vector,
processor 102 assumes a predicate vector for which all ele-
ments are active, and performs the following operations for
each element of the dependency-checking instruction. Note
also that the predicate vector, be it received or assumed, is
originally associated with the dependency-checking instruc-
tion, but is also used in predicting the result vector for the
dependency-checking instruction—if such a prediction is
made.

Prediction mechanism 404 then encounters a dependency-
checking instruction (step 502). In the embodiments
described with respect to FIG. 5, prediction mechanism 404
encounters the dependency-checking instruction while moni-
toring instructions that are received by steering mechanism
400. In these embodiments, processor 102 monitors the
instructions to determine when a dependency-checking
instruction is to be dispatched. As described above, a depen-
dency-checking instruction generally checks for dependen-
cies between the active elements of one or more vectors, and
generates a result vector that indicates where dependencies, if
any, were encountered (a dependency exists when a given
element of a vector depends on at least one prior element in
the vector or in another vector(s)). For example, prediction
mechanism can monitor the instructions for a Conditional-
Stop instruction, a CheckHazardP instruction, or another
instruction that checks for dependencies between the active
elements of one or more vectors.

Next, prediction mechanism 404 determines if a result
vector for the dependency-checking instruction is predictable
(step 504). In making the determination, prediction mecha-
nism 404 determines whether it is likely that all of the active
elements of a result vector generated by the dependency-
checking instruction will be set to zero, indicating that depen-
dencies are unlikely to be encountered between the active
elements of the one or more vectors.

The determination whether a result vector for the depen-
dency-checking instruction is predictable that is made by
prediction mechanism 404 can be based on one or more
factors. Generally, any factor that can be used to characterize
the dependency-checking instruction (e.g., the type, address,
inputs, outputs, etc. of the dependency-checking instruction),
the history of instruction execution (i.e., the dependency-
checking instruction itself and/or other instructions), the past
or current state of processor 102, etc. can be used in making
the determination. As examples, prediction mechanism 404
can make the prediction based on one or more of the following
factors: (1) a record in processor 102 indicates that the depen-
dency-checking instruction generated a result vector for
which all of the active elements were set to zero when
executed one or more previous times; (2) a table lookup
computed from an address of the dependency-checking
instruction returns a confirmation that the active elements of
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a result vector from the dependency-checking instruction are
all likely to be set to zero; (3) one or more processor tracking
mechanisms are set to indicate that the active elements of a
result vector from the dependency-checking instruction are
all likely to be set to zero; (4) a computation made by a
prediction computation mechanism (e.g., a fuzzy logic, pro-
cessor, neural network, etc.) in prediction mechanism 404
indicates that the active elements of a result vector from the
dependency-checking instruction are all likely to be set to
zero; (5) the variant of the dependency-checking instruction
being predicted indicates that the active elements of result
vector from the dependency-checking instruction are all
likely to be set to zero; (6) the addresses of one or more prior
instructions of a given type that preceded the dependency-
checking instruction indicate that the active elements of the
result vector from the dependency-checking instruction are
all likely to be set to zero; (7) one or more factors related to
executing instructions prior to the dependency-checking
instruction (a code-path history) indicate that the active ele-
ments of the result vector from the dependency-checking
instruction are all likely to be set to zero; (8) a pattern of taken
or not-taken branches for a number of branches that preceded
the dependency-checking instruction that is being predicted
indicates that the active elements of the result vector from the
dependency-checking instruction are all likely to be set to
zero; (9) a value of counter indicating the number of occur-
rences of an event (e.g., a prior prediction) indicates that the
active elements of the result vector from the dependency-
checking instruction are all likely to be set to zero; or (10) a
value of a variable representing a confidence level of predict-
ing the dependency-checking instruction, in which the con-
fidence level is adjusted based on the relationship between at
least one prior prediction, indicates that the active elements of
the result vector from the dependency-checking instruction
are all likely to be set to zero. In these embodiments, predic-
tion mechanism 404 can store a value that represents each
factor to be used in making a decision and then can perform
one or more mathematical, logical, combinatory, comparison,
or algorithmic operations using the values to make the deter-
mination.

In addition, when making the determination whether a
result vector is predictable, prediction mechanism 404 can
determine that all active elements in the result vectors for all
dependency-checking instructions are to be predicted in the
same way. That is, predict that the active elements in the result
vectors for all dependency-checking instruction will contain
zero. In some embodiments, the prediction can be made with-
out considering any of the above-described factors, i.e., can
be automatic.

In the described embodiments, prediction mechanism 404
can include one or more variables, memory locations, regis-
ters, lookup tables, status flags/indicators, functional blocks,
or other mechanisms or circuit structures that are used to hold
values representing the factors to enable prediction mecha-
nism 404 to determine if the result vector for the dependency-
checking instruction is predictable. Prediction mechanism
404 can use these mechanisms to maintain records of the one
or more factors that are used in making the determination.
Prediction mechanism 404 and/or processor 102 can addi-
tionally compute values to be used by prediction mechanism
404 for making the determination. These values can be com-
puted at the time that the determination is to be made or can be
automatically computed whenever a relevant event occurs
and stored in one or more of the mechanisms in prediction
mechanism 404.

In these embodiments, if prediction mechanism 404 deter-
mines that a result vector for the dependency-checking
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instruction cannot be predicted with sufficient likelihood of
success, prediction mechanism 404 does not predict the result
vector (step 504). For example, prediction mechanism 404
can determine that the result of the dependency-checking
instruction cannot be predicted if it is likely that the result
vector include both zeroes and other values; if it is not suffi-
ciently clear whether all of the values of the result vector will
be all zero based on the one or more factors used in making the
determination; and/or if it is not clear whether or not depen-
dencies are likely to be encountered between the active ele-
ments of the one or more vectors. In the event that the result
vector cannot be predicted, the dependency-checking instruc-
tion is dispatched and executed (step 506), and processor 102
awaits the actual result vector from the dependency-checking
instruction to be used as an input for subsequent instructions
(step 508). Note that in this case, prediction mechanism 404
does not generate/dispatch the prediction micro-operation
that is described in more detail below.

Upon determining that a result vector for the dependency-
checking instruction is predictable (step 504), prediction
mechanism 404 generates a prediction micro-operation and
places the prediction micro-operation in the dispatch queue
for vector execution unit 204 (step 510). More specifically,
upon determining that the active elements in the result vector
for the dependency-checking instruction are all likely to be
set to zero, prediction mechanism 404 generates a prediction
micro-operation that generates an output vector in which each
active element is set to zero and places the prediction micro-
operation in the dispatch queue before the dependency-
checking instruction. Note that the dependency-checking
instruction is also placed in the dispatch queue (albeit after the
prediction micro-operation) because the dependency-check-
ing instruction is also executed to generate an actual result
vector for comparison with the predicted result vector gener-
ated by the prediction micro-operation. In some embodi-
ments, generating the prediction micro-operation comprises
generating an all-zero variant of the prediction micro-opera-
tion.

When the prediction micro-operation eventually arrives at
the head of the dispatch queue, dispatch unit 208 dispatches
the prediction micro-operation to vector execution unit 204 to
be executed and generate the predicted result vector (step
512). Unlike the dependency-checking instruction, the pre-
diction micro-operation has no dependencies (aside from a
predicate vector, which is either available before the predic-
tion micro-operation is dispatched or is assumed). Thus, as
soon as the prediction micro-operation is received in vector
execution unit 204, it can be executed to generate the pre-
dicted result vector. In contrast, the dependency-checking
instruction may be stalled in dispatch unit 208 and/or in the
execution unit 204 until dependency for the dependency-
checking instruction can be resolved. Generally, this means
that the prediction micro-operation, which both executes first
and has no dependencies, can generate a predicted result
vector before the actual result vector can be generated by the
dependency-checking instruction. Note that, although the
prediction micro-operation is executed to generate the pre-
dicted result vector, the dependency-checking instruction is
still dispatched and executed to generate an actual result
vector that is eventually compared to the predicted result
vector as a verification of the prediction.

Processor 102 then uses the predicted result vector to
execute subsequent vector instructions that depend on the
result from the dependency-checking instruction (step 514).
In some embodiments, after generating the predicted result
vector, while dispatching one or more subsequent vector
instructions that depend on the result of the dependency-
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checking instruction (i.e., that use the result vector generated
by the dependency-checking instruction), processor 102
modifies the dependency of the subsequent vector instruc-
tions so that the subsequent vector instructions use the pre-
dicted result vector output from the prediction micro-opera-
tion instead of the actual result vector output from the
dependency-checking instruction. Thus, the subsequent
instructions use the predicted result vector as an input instead
of'using the actual result vector generated by the dependency-
checking instruction.

As described below, using the predicted result vector
includes performing other operations to ensure that the pre-
diction was correct and to perform remedial actions when the
prediction was incorrect.

Predicting a Result for a Dependency-Checking Instruction
using a Compiler-Inserted Prediction Instruction

FIG. 6 presents a flowchart illustrating a process for pre-
dicting the result of a dependency-checking instruction using
a compiler-inserted prediction instruction in accordance with
the described embodiments. In the embodiments shown in
FIG. 6, during a compilation process, a compiler inserts pre-
diction instructions that are each associated with a corre-
sponding dependency-checking instruction. The prediction
instructions, when decoded at runtime, generate correspond-
ing prediction micro-operations. The prediction micro-opera-
tion, if dispatched and executed, generates a predicted result
vector for the associated dependency-checking instruction.

The embodiments shown in FIG. 6 differ from the embodi-
ments shown in FIG. 5 in that the prediction micro-operation
is not generated by prediction mechanism 404 following a
determination whether the dependency-checking instruction
is predictable. In addition, in some of the embodiments shown
in FIG. 6, prediction mechanism 404 does not monitor
instructions to determine when a dependency-checking
instruction has been encountered. Instead, in these embodi-
ments, prediction mechanism 404 simply processes com-
piler-inserted prediction micro-operations. Thus, prediction
mechanism 404 may include less mechanisms/functional
blocks in the embodiments shown in FIG. 6 (although the
compiler in these embodiments includes code/logic for gen-
erating prediction instructions).

The process shown in FIG. 6 starts when processor 102
optionally receives a predicate vector (step 600). Recall that
processor 102 uses active elements of the predicate vector to
determine the elements of a dependency-checking instruction
(see step 602) for which result vector elements are generated.
However, if processor 102 does not receive a predicate vector,
processor 102 assumes a predicate vector for which all ele-
ments are active, and performs the following operations for
each element of the dependency-checking instruction. Note
also that the predicate vector, be it received or assumed, is
originally associated with the dependency-checking instruc-
tion, but is also used in predicting the result vector for the
dependency-checking instruction—if such a prediction is
made.

Prediction mechanism 404 then receives a prediction
micro-operation decoded from a compiler-inserted prediction
instruction, wherein the prediction micro-operation is asso-
ciated with a prediction-generating instruction (step 602). As
described above, the compiler inserts the prediction instruc-
tion in the program code relative to the dependency-checking
instruction during compilation based on an analysis of the
program code. Note that the compiler inserts a prediction
instruction that, when decoded, generates a variant of the
prediction micro-operation that generates a result vector for
which all active elements are set to zero.
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Next, prediction mechanism 404 determines if a result
vector for the dependency-checking instruction can be pre-
dicted (step 604). In making the determination, prediction
mechanism 404 determines whether it is likely that all of the
active elements of a result vector generated by the depen-
dency-checking instruction will be set to zero, which indi-
cates that dependencies are unlikely to be encountered
between the active elements of the one or more vectors.

The determination whether a result vector for the depen-
dency-checking instruction is predictable that is made by
prediction mechanism 404 can be based on one or more
factors. Generally, any factor that can be used to characterize
the dependency-checking instruction (e.g., the type, address,
inputs, outputs, etc. of the dependency-checking instruction),
the history of instruction execution (i.e., the dependency-
checking instruction itself and/or other instructions), the past
or current state of processor 102, etc. can be used in making
the determination. Some exemplary factors are listed in the
description of FIG. 5.

In addition, when making the determination whether a
result vector is predictable (i.e., can be predicted), prediction
mechanism 404 can determine that all active elements in the
result vectors for all dependency-checking instructions will
contain zero. In some embodiments, the prediction can be
made without considering any of the above-described factors,
i.e., can be automatic.

In the described embodiments, prediction mechanism 404
can include one or more variables, memory locations, regis-
ters, lookup tables, status flags/indicators, functional blocks,
or other mechanisms or circuit structures that are used to hold
values representing the factors to enable prediction mecha-
nism 404 to determine if the result vector for the dependency-
checking instruction is predictable. Prediction mechanism
404 can use these mechanisms to maintain records of the one
or more factors that are used in making the determination.
Prediction mechanism 404 and/or processor 102 can addi-
tionally compute values to be used by prediction mechanism
404 for making the determination. These values can be com-
puted at the time that the determination is to be made or can be
automatically computed whenever a relevant event occurs
and stored in one or more of the mechanisms in prediction
mechanism 404.

In these embodiments, if prediction mechanism 404 deter-
mines that a result vector for the dependency-checking
instruction cannot be predicted with sufficient likelihood of
success, prediction mechanism 404 does not predict the result
vector (step 604). For example, prediction mechanism 404
can determine that the result of the dependency-checking
instruction cannot be predicted if it is likely that the result
vector include both zero and other values; if it is not suffi-
ciently clear whether all of the values of the result vector will
be all zero based on the one or more factors used in making the
determination; and/or if it is not clear whether or not depen-
dencies are likely to be encountered between the active ele-
ments of the one or more vectors.

In the event that the result vector cannot be predicted,
prediction mechanism 404 prevents the prediction micro-
operation from generating a result vector that is to be used in
executing subsequent instructions (step 606). For example,
prediction mechanism 404 can prevent the prediction micro-
operation from being placed in the dispatch queue, can invali-
date the prediction micro-operation (i.e., set an indicator in
processor 102 that the prediction micro-operation is invalid),
can cause the result of the prediction micro-operation to be
invalidated or deleted, or can perform another operation to
prevent the result of the prediction micro-operation from
affecting subsequent execution. Dispatch unit 208 then dis-
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patches the dependency-checking instruction for execution
(step 608). Next, processor 102 awaits the actual result vector
from the dependency-checking instruction to be used as an
input for subsequent instructions (step 610).

Upon determining that a result vector for the dependency-
checking instruction can be predicted (step 604), prediction
mechanism 404 places the prediction micro-operation in the
dispatch queue for vector execution unit 204 (step 612). Note
that the dependency-checking instruction is also placed in the
dispatch queue (albeit after the prediction micro-operation)
because the dependency-checking instruction is also
executed to generate an actual result vector for comparison
with the predicted result vector generated by the prediction
micro-operation.

When the prediction micro-operation eventually arrives at
the head of the dispatch queue, dispatch unit 208 dispatches
the prediction micro-operation to vector execution unit 204 to
be executed and generate the predicted result vector (step
614). As described above with respect to FIG. 5, unlike the
dependency-checking instruction, the prediction micro-op-
eration has no dependencies (aside from a predicate vector,
which is either available before the prediction micro-opera-
tion is dispatched or is assumed). Thus, as soon as the pre-
diction micro-operation is received in vector execution unit
204, it can be executed to generate the predicted result vector.

Processor 102 then uses the predicted result vector to
execute subsequent vector instructions that depend on the
result from the dependency-checking instruction (step 616).
In some embodiments, after generating the predicted result
vector, while dispatching one or more subsequent vector
instructions that depend on the result of the dependency-
checking instruction (i.e., that use the result vector generated
by the dependency-checking instruction), processor 102
modifies the dependency of the subsequent vector instruc-
tions so that the subsequent vector instructions use the pre-
dicted result vector output from the prediction micro-opera-
tion instead of the actual result vector output from the
dependency-checking instruction. Thus, the subsequent
instructions use the predicted result vector as an input instead
of'using the actual result vector generated by the dependency-
checking instruction.

As described below, using the predicted result vector
includes performing other operations to ensure that the pre-
diction was correct and to perform remedial actions when the
prediction was incorrect.

Verification of Prediction

In both of the embodiments shown in FIGS. 5-6, because
the dependency of the subsequent vector instructions is modi-
fied and/or because the correctness of the prediction cannot
be ensured until the predicted result vector is compared to the
actual result vector, processor 102 treats the execution of
instructions executed using the predicted result vector as
speculative until the comparison can be made. Thus, moni-
toring mechanism 406 includes one or more mechanisms for
recording that vector instructions are being executed based on
the predicted result of the dependency-checking instruction.
For example, in some embodiments, monitoring mechanism
406 includes a speculative execution indicator that is set upon
dispatching a prediction micro-operation. While this indica-
tor is set, processor 102 treats execution as speculative. While
speculatively executing the subsequent instructions, proces-
sor 102 performs one or more operations to ensure that the
operating state of the processor can be recovered to a pre-
speculation operating state. For example, processor 102 may
preserve the pre-speculation architectural state and may not
commit the results from speculatively executed instructions
to the architectural state of processor 102.
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When the dependency-checking instruction eventually fin-
ishes execution and generates an actual result vector, moni-
toring mechanism 406 compares the predicted result vector to
the actual result vector. If the predicted result vector and the
actual result vector do not match, processor 102 determines
that the prediction was incorrect and performs a remedial
action. For example, processor 102 can delete/invalidate the
speculative results, restore the processor state, and begin
executing instructions following the dependency-checking
instruction using the actual result vector.

On the other hand, if the predicted result vector matches the
actual result vector generated by the dependency-checking
instruction, processor 102 clears the speculative execution
indicator, commits the speculative results, and continues
execution.

Making Predictions based on Prediction Accuracy

In some embodiments, prediction mechanism 404 includes
a mechanism for tracking prediction accuracy for corre-
sponding dependency-checking instructions. In these
embodiments, the prediction accuracy can be kept as a value
that represents a portion of the predictions that turned out to
be correct and/or incorrect. For example, the prediction accu-
racy can be kept as a percentage of all the predictions made
that proved to be correct. The prediction accuracy can be used
as one of the factors in determining whether a dependency-
checking instruction can be predicted. For example, if the
prediction accuracy is below a threshold value (e.g., X %
correct, last M predictions correct, etc.), prediction mecha-
nism 404 may not make the prediction (or may only make the
prediction if one or more of the other factors strongly indi-
cates that the dependency-checking instruction is predict-
able).

In some embodiments, as part of tracking prediction accu-
racy, a value representing a confidence level can be kept based
upon the past prediction(s) of one or more corresponding
dependency-checking instructions. In these embodiments,
the confidence level may be represented by a range of numeri-
cal values. For example, the confidence level in a given pre-
diction can be represented by a value between —1 and +1,
where -1 indicates a relatively high likelihood of a result
vector for which all active elements are set to zero, and +1
indicates a relatively high likelihood of a result vector for
which at least one active element is set to a non-zero value. In
these embodiments, a confidence level more than a given
distance from -1 indicates that, for the corresponding depen-
dency-checking instruction, the values that the elements of a
result vector are likely to be set is unclear (or, rather, it is not
clear that the active elements will be set to zero). In these
embodiments, prediction mechanism 404 may include one or
more threshold confidence levels, below or above which a
prediction is not made.

In the described embodiments, as part of the comparison
operation performed by monitoring mechanism 406, moni-
toring mechanism 406 updates the confidence level of the
prediction and/or the prediction accuracy. If the elements in
the predicted result vector are all set to zero and the actual
result vector contains one or more non-zero values, the con-
fidence level for the prediction can be adjusted to a value that
is closer to 1. If the elements in the predicted result vector are
all set to zero and the actual result vector contains all zero, the
confidence level for the prediction can be adjusted to a value
that is closer to negative 1.

The foregoing descriptions of embodiments have been pre-
sented only for purposes of illustration and description. They
are not intended to be exhaustive or to limit the embodiments
to the forms disclosed. Accordingly, many modifications and
variations will be apparent to practitioners skilled in the art.
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Additionally, the above disclosure is not intended to limit the
embodiments. The scope of the embodiments is defined by
the appended claims.
What is claimed is:
1. A method for executing a vector instruction in a proces-
sor, comprising:
while dispatching instructions at runtime, encountering a
dependency-checking instruction;
determining whether a result of the dependency-checking
instruction is predictable by determining whether all of
the active elements of a result vector generated by the
dependency-checking instruction are likely to be set to
Zero;
upon determining that a result of the dependency-checking
instruction is predictable, dispatching a prediction
micro-operation associated with the dependency-check-
ing instruction, wherein the prediction micro-operation
generates a predicted result vector for the dependency-
checking instruction; and
executing the prediction micro-operation, which com-
prises:
optionally receiving a predicate vector; and
generating a predicted result vector as an output of the
prediction micro-operation, wherein, if the predicate
vector is received, for each element of the predicted
result vector for which the predicate vector is active,
otherwise, for each element of the predicted result vec-
tor, generating the predicted result vector comprises set-
ting the element of the predicted result vector to zero.
2. The method of claim 1, wherein the method further
comprises:
upon generating the predicted result vector, recording that
subsequent vector instructions are being executed
speculatively; and
using the predicted result vector to execute subsequent
vector instructions that depend on the result from the
dependency-checking instruction.
3. The method of claim 1, wherein the method further
comprises:
dispatching the dependency-checking instruction;
executing the dependency-checking instruction to generate
an actual result vector;
if the predicate vector is received, for each element of the
predicted result vector for which the predicate vector is
active, otherwise, for each element of the predicted
result vector, comparing the element of the predicted
result vector to the corresponding element of the actual
result vector; and
performing a remedial action if the comparison determines
that the predicted result vector differs from the actual
result vector.
4. The method of claim 3, wherein the method further
comprises:
maintaining a record of an outcome of the comparison,
wherein the record comprises a record of a prediction
accuracy.
5. The method of claim 4, wherein the method further
comprises:
when the prediction accuracy is below a threshold value,
determining that the result of the dependency-checking
instruction is unpredictable; and
dispatching the dependency-checking instruction;
executing the dependency-checking instruction to generate
an actual result vector; and
using the actual result vector to execute subsequent vector
instructions that depend on the result from the depen-
dency-checking instruction.
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6. The method of claim 4, wherein the record of the pre-
diction accuracy comprises a confidence level represented by
a value between a first value and a second value, and wherein
determining that a result of the dependency-checking instruc-
tion is predictable comprises:

determining that a result of the dependency-checking

instruction is predictable when the value of the confi-
dence level is within a predetermined amount of the first
value.

7. The method of claim 6, wherein the method further
comprises:

when active elements of the actual result vector include

both zeroes and other-valued elements or when the
active elements of the actual result vector include only
other-valued elements, adjusting the confidence level
toward the second value; and

when active elements of the actual result vector include

only zeroes, adjusting the confidence level toward the
first value.
8. The method of claim 1, wherein the method further
comprises:
before dispatching subsequent vector instructions that
depend on the dependency-checking instruction,

modifying the dependency of the subsequent vector
instructions from using the actual result vector from the
dependency-checking instruction to using the predicted
result vector generated by the prediction micro-opera-
tion.

9. The method of claim 1, wherein the method further
comprises:

upon determining that the result is not predictable for the

dependency-checking instruction,

dispatching the dependency-checking instruction;

executing the dependency-checking instruction to generate

an actual result vector; and

using the actual result vector to execute subsequent vector

instructions that depend on the result from the depen-
dency-checking instruction.

10. The method of claim 1, wherein determining whether
the result of the dependency-checking instruction is predict-
able comprises using one or more factors to determine if the
result can be predicted for the dependency-checking instruc-
tion.

11. The method of claim 1, wherein the method further
comprises:

receiving the prediction micro-operation decoded from a

compiler-inserted prediction instruction.

12. The method of claim 1, wherein the method further
comprises:

upon determining that a result vector of the dependency-

checking instruction is predictable, generating the pre-
diction micro-operation.

13. The method of claim 1, wherein the dependency-check-
ing instruction comprises a CheckHazard instruction or a
ConditionalStop instruction.

14. A processor that executes vector instructions, compris-
ing:

an execution unit in the processor; and

a dispatch unit in the processor;

wherein, while dispatching instructions at runtime, upon

encountering a dependency-checking instruction, the
dispatch unit is configured to determine whether a result
of the dependency-checking instruction is predictable
by determining whether all of the active elements of a
result vector generated by the dependency-checking
instruction are likely to be set to zero; and
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upon determining that a result of the dependency-checking
instruction is predictable, the dispatch unit is configured
to dispatch a prediction micro-operation associated with
the dependency-checking instruction, wherein the pre-
diction micro-operation generates a predicted result vec-
tor for the dependency-checking instruction; and

wherein the execution unit is configured to execute the
prediction micro-operation, which comprises:

optionally receiving a predicate vector; and

generating a predicted result vector as an output of the
prediction micro-operation, wherein, if the predicate
vector is received, for each element of the predicted
result vector for which the predicate vector is active,
otherwise, for each element of the predicted result vec-
tor, generating the predicted result vector comprises set-
ting the element of the predicted result vector to zero.

15. The processor of claim 14, wherein, upon generating
the predicted result vector, the execution unit is configured to:

record that subsequent vector instructions are being
executed speculatively; and

use the predicted result vector to execute subsequent vector
instructions that depend on the result from the depen-
dency-checking instruction.

16. The processor of claim 14, wherein the dispatch unit is
further configured to dispatch the dependency-checking
instruction, and the execution unit is configured to:

execute the dependency-checking instruction to generate
an actual result vector; and

if the predicate vector is received, for each element of the
predicted result vector for which the predicate vector is
active, otherwise, for each element of the predicted
result vector, compare the element of the predicted result
vector to the corresponding element of the actual result
vector;

wherein the processor is configured to perform a remedial
action if the comparison determines that the predicted
result vector differs from the actual result vector.

17. The processor of claim 16, further comprising:

a monitoring mechanism in the processor, wherein the
monitoring mechanism is configured to maintain a
record of an outcome of the comparison, wherein the
record comprises a record of a prediction accuracy.

18. The processor of claim 17, wherein, when the predic-
tion accuracy is below a threshold value, the dispatch unit is
configured to:

determine that the result of the dependency-checking
instruction is unpredictable; and

dispatch the dependency-checking instruction;

wherein the execution unit is configured to:

execute the dependency-checking instruction to generate
an actual result vector; and

use the actual result vector to execute subsequent vector
instructions that depend on the result from the depen-
dency-checking instruction.

19. The processor of claim 17, wherein the record of the
prediction accuracy comprises a confidence level represented
by a value between a first value and a second value, and
wherein when determining that a result of the dependency-
checking instruction is predictable, the dispatch unit is con-
figured to:

determine that a result of the dependency-checking
instruction is predictable when the value of the confi-
dence level is within a predetermined amount of the first
value.

20. The processor of claim 19, wherein when the compari-

son determines that active elements of the actual result vector
include both zeroes and other-valued elements or that the
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active elements of the actual result vector include only other-
valued elements, the monitoring mechanism is configured to
adjust the confidence level toward the second value; and
when the comparison determines that active elements of
the actual result vector include only zeroes, the moni-
toring mechanism is configured to adjust the confidence
level toward the first value.

21. The processor of claim 14, wherein, before dispatching
subsequent vector instructions that depend on the depen-
dency-checking instruction, the dispatch unit is configured to
modify the dependency of the subsequent vector instructions
from using the actual result vector from the dependency-
checking instruction to using the predicted result vector gen-
erated by the prediction micro-operation.

22. The processor of claim 14, wherein, upon determining
that the result is not predictable for the dependency-checking
instruction, the dispatch unit is configured to:

dispatch the dependency-checking instruction;

wherein the execution unit is configured to:

execute the dependency-checking instruction to generate

an actual result vector; and

use the actual result vector to execute subsequent vector

instructions that depend on the result from the depen-
dency-checking instruction.

23. The processor of claim 14, wherein when determining
that the result of the dependency-checking instruction is pre-
dictable, the dispatch unit is configured to use one or more
factors to determine if the result can be predicted for the
dependency-checking instruction.

24. The processor of claim 14, wherein the dispatch unit is
configured to receive the prediction micro-operation decoded
from a compiler-inserted prediction instruction.

25. The processor of claim 14, wherein upon determining
that a result vector of the dependency-checking instruction is
predictable, the dispatch unit is configured to generate the
prediction micro-operation.

26. The processor of claim 14, wherein the dependency-
checking instruction comprises a CheckHazard instruction or
a ConditionalStop instruction.

27. A computer system for executing a vector instruction in
a processor, comprising:

a processor;

a memory coupled to the processor, wherein the memory

stores data and instructions for the processor;

an execution unit in the processor; and

a dispatch unit in the processor;

wherein, while dispatching instructions at runtime, upon

encountering a dependency-checking instruction, the
dispatch unit is configured to determine whether a result
of the dependency-checking instruction is predictable
by determining whether all of the active elements of a
result vector generated by the dependency-checking
instruction are likely to be set to zero; and

upon determining that a result of the dependency-checking

instruction is predictable, the dispatch unit is configured

to dispatch a prediction micro-operation associated with

the dependency-checking instruction, wherein the pre-

diction micro-operation generates a predicted result vec-

tor for the dependency-checking instruction; and
wherein the execution unit is configured to execute the

prediction micro-operation, which comprises:
optionally receiving a predicate vector; and

generating a predicted result vector as an output of the

prediction micro-operation, wherein, if the predicate
vector is received, for each element of the predicted
result vector for which the predicate vector is active,
otherwise, for each element of the predicted result vec-
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tor, generating the predicted result vector comprises set-
ting the element of the predicted result vector to zero.
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